US009400810B2

a2 United States Patent 10) Patent No.: US 9,400,810 B2
Carlson et al. (45) Date of Patent: *Jul. 26, 2016
(54) MONITORING AND DEBUGGING QUERY USPC ottt 707/705
EXECUTION OBJECTS See application file for complete search history.
(71) Applicant: International Business Machines 56 Ref Cited
Corporation, Armonk, NY (US) (56) ¢lerences Lot
U.S. PATENT DOCUMENTS
(72) Inventors: David G. Carlson, Rochester, MN (US);
Steven V. Hoeschen, Rochester, MN 5,748,881 A * 5/1998 Lewiscccecoenen. GO6F 11/3466
(US); Kevin J. Kathmann, Rochester, 345/619
MN (US) 6,052,694 A * 4/2000 Bromberg 707/999.2
6,141,699 A 10/2000 TLuzzi et al.
6,477,527 B2* 11/2002 Careycc.c.... GOGF 17/3041
(73) Assignee: International Business Machines ney 707/999.004
Corporation, Armonk, NY (US) 6,910,032 B2 6/2005 Carlson et al.
Continued
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 172 days.
. Daniel J. Abadi et al., “Aurora: A New Model and Architecture for
Tlhl,s patent is subject to a terminal dis- ;) Siream Management”, 2003, VLDB Journal 12, pp. 120-139.*
clamer. (Continued)
(21) Appl. No.: 13/788,699
. Primary Examiner — Scott A Waldron
22) Filed: Mar. 7, 2013
(22) File ar (74) Attorney, Agent, or Firm — Martin & Associates, LL.C;
(65) Prior Publication Data Derek P. Martin
US 2013/0191411 Al Jul. 25,2013 57) ABSTRACT
Related U.S. Application Data Nodes in a query execution data structure have monitor and
(63) Continuation of application No. 12/038,446, filed on dump metthS deﬁged. The monitor method enables the col-
Feb. 27, 2008, which is a continuation of application lection of information from the node. The dump method
No. 11/282,030, filed on Nov. 17, 2005, now Pat. No. outputs the monitored information from each node. A monitor
9,092,464. and debug mechanism of the preferred embodiments includes
a graphical user interface that allows a user to graphically
(51) Int.CL examine a query execution tree, to enable monitoring of the
GO6F 17/30 (2006.01) nodes on a node-by-node basis, and to view information
GO6F 3/048 (2013.01) dumped from the query execution data structure as the query
(52) U.S.CL is executed or after the query is executed. The result is a
CPC .. GOGF 17/30289 (2013.01); GO6F 3/948 ~ powerful tool that allows efficiently monitoring and debug-
(2013.01); GOG6F 17/30483 (2013.01) ging a query implemented in an object oriented query execu-
(58) Field of Classification Search tion data structure.

CPC ..covvoveeee GOGF 3/048; GOGF 17/30289; GOG6F
17/30483 4 Claims, 10 Drawing Sheets
, 125
Query Execution Data|

Structure 210 126

Query Execution |7 Monitor and Debug P

Object (Node) /220 Mechanism
Monitor IF || 230 240 127
L7
Dump I/fF H J > GUI -+
; 250 A

File

US 9,400,810 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

6,944,614 Bl *
7,234,112 Bl
7,532,086 B2
7,599,923 B2
2002/0143755 Al*
2003/0217345 Al*
2003/0229627 Al*
2004/0010716 Al*
2004/0039942 Al*

9/2005
6/2007
5/2009
10/2009
10/2002
11/2003
12/2003
1/2004
2/2004

Ramasamy et al. ... 707/999.004
Brown et al.

Ju et al.

Brown et al.

Wynblatt et al. 707/3
Rajsuman et al. . 716/6

Carlson et al. 707/3
Childress et al. ... 713/201
Cooperetal. 713/201

2004/0103315 Al 5/2004 Cooper et al.

2005/0010880 Al 1/2005 Schubert et al.

2005/0216248 Al* 9/2005 Ciolfietal. ... 703/22

2006/0282695 Al* 12/2006 Mitaletal. ... 713/502
OTHER PUBLICATIONS

Tore Risch, “Monitoring Database Objects”, 1989, Proceedings of
the 15th International Conference on Very Large Data Bases, pp.

445.454 %

* cited by examiner

U.S. Patent Jul. 26, 2016 Sheet 1 of 10 US 9,400,810 B2
100
110
Processor
N 1/60
120

Main Memory
129 ——] Data
122 —— Operating System
128 ——— Database =~
124 — .. Query Engine
Query Execution
125 = DpataStructure
126 — Monitor and Debug
Mechanism
127 — GUI |
130 140 iL 150
~_ ~N_ /
| Mass Storage IF | | Display IF | Network I/F
T~
~ 170
~_~ | |
155
DASD |/ Display
/ 175 175
4 165
o0 FIG. 1

o=

U.S. Patent Jul. 26, 2016 Sheet 2 of 10 US 9,400,810 B2

125
Query Execution Data |
Structure
210 126
Query Execution g Monitor and Debug |
Object (Node) /220 Mechanism
Monitor IF [T 230 240 127
i

Dump IlF H / P> GUI -

: 250 A

: / i

L > File

Select * from MYFILE1, MYFILEZ2
400
410
[Inner Join Node (1) j/
420 440
\[Scan Node (2)] [Scan Node (3) j/
430 450
A Dataspace Dataspace d
MYFILE1 MYFILE2

FIG. 4 Prior Art

U.S. Patent Jul. 26, 2016 Sheet 3 of 10 US 9,400,810 B2

500
Inner Join Node (1) 510 i
monitor()
dump()
520 Scan Node (2) Scan Node (3) 540
monitor() monitor()
dump() dump()
530 550
N Dataspace Dataspace 9
MYFILEA1 MYFILE2
600
LG75RT9:1122 - My Tree][]
610
Host | LG75RT9 —
620
Port 1122 —
630
Query Execution Tree | MyTree —
640 650 660 670
(Refresh) (Change Monitor Statej [Show Query Controls) [Close)

FIG. 6

U.S. Patent Jul. 26, 2016 Sheet 4 of 10 US 9,400,810 B2

700
Query Tree Display g @
File View
710
[Inner Join Node (1)}/
720 Scan Node (2) Scan Node (3) 740
251 processed 1373584074
processed
730 750
N Dataspace Dataspace 5
MYFILE1 MYFILE2

FIG. 7

U.S. Patent Jul. 26, 2016 Sheet 5 of 10 US 9,400,810 B2

700
Query Tree Display g |E|
File View
710
[Inner Join Node (1)j/
720 Scan Node (2) Scan Node (3) 740
383 processed 2182122947
processed
730 750
A Dataspace Dataspace rd
MYFILE" MYFILE2

FIG. 8

U.S. Patent Jul. 26, 2016 Sheet 6 of 10 US 9,400,810 B2
/900
Data for Scan Node 2 g @
910
Node Type | Scan —
920
Number Processed | 383 —
930
Node ID 2 —
940 950 960
/ /
[Change Monitor State) [Display Resource] [Display AOL)

FIG. 9

U.S. Patent Jul. 26, 2016 Sheet 7 of 10 US 9,400,810 B2

1000
Data for Scan Node 2 I;| @ /

910
Node Type | Scan —

920
Number Processed | 383 —

930

Node ID | 2 ul 1010

J
X

Monitor State 1 Total Cycles [65557| Running Time |0.000104

Monitor Cycles | 0 | Node Cycles |65557 | Node CPU Time |[0.000096
1020

Method Counters 1 Total Time 0.000194

Open 0 1030
Close 0 /O Counters ,/
Position Before Start 0 Sync DB Reads 0
Position After End 0 Sync Non-DB Reads 0
Position Before RRN 0 Async DB Reads 0
Position After RRN 0 Async Non-DB Reads | 0
Position Next RRN 0 I/0 Pending Waits 0
Position Previous RRN 0 Sync I/O Waits 0
Position By Key 0 Page Faults 0
Position Next and Execute 7

Position Previous and Execute| 0

Prepare for Validate 18

Resume 0

Validate 18

Refresh 0

Cleanup 0

940 950 960

[Change Monitor State] [Display Resource] [Display AOL]

FIG. 10

U.S. Patent Jul. 26, 2016 Sheet 8 of 10 US 9,400,810 B2

/11 00
Final AOL for Query Tree Display I;I @
Binary 1110
Operation
(1=3)

Binary 1120
Operation

(0=2)

Retur.n 1130
Operation

(TRUE)

1200
Attribute Descriptor Vector for Query Tree Display Q @
121
0 | Int32 User — 1228
1 Int32 User —
1230
2 Int32 SAD 55 —
1240
3 Int32 SAD 76 ul

FIG. 12

U.S. Patent Jul. 26, 2016 Sheet 9 of 10 US 9,400,810 B2

/1300
Query Controller for Query Tree]
1310
Last Status | —
Position Before Start |
Position After End |

Position Before RRN | |
Position After RRN | |

Position Before Entry | |

Position Prior To Entry | |

Position After Entry | |

Position Following Entry | |

Position Next Entry | |

Position Previous Entry | |

Position Prior to Entry |

Position Following Entry |

Position Next Entry and Fetch |

Position Previous Entry and Fetch| 1320

FIG. 13

U.S. Patent Jul. 26, 2016 Sheet 10 of 10 US 9,400,810 B2

1400

/

Provide Monitor and Dump /141 0

Methods in Each Node of Query
Execution Tree

+ 1420
Execute GUI for Monitor and |

Debug Mechanism

FIG. 14

1420

/
10

Display Query Tree

v

Enable/Disable Monitoring of
Individual Nodes in Query Tree

v 1530
Read Monitored Data Dumped |/

from Nodes in Query Tree

+ 1540
Graphically Display Dumped |/
Monitored Data

+ 1550
Perform Query Debug Functions| /

Using Monitored Data

FIG. 15

US 9,400,810 B2

1

MONITORING AND DEBUGGING QUERY
EXECUTION OBJECTS

CROSS-REFERENCE TO PARENT
APPLICATION

This patent application is a continuation of U.S. Ser. No.
12/038,446, filed on Feb. 27, 2008, which is incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

This invention generally relates to computer systems, and
more specifically relates to database apparatus and methods.

2. Background Art

Database systems have been developed that allow a com-
puter to store a large amount of information in a way that
allows a user to search for and retrieve specific information in
the database. For example, an insurance company may have a
database that includes all of its policy holders and their cur-
rent account information, including payment history, pre-
mium amount, policy number, policy type, exclusions to cov-
erage, etc. A database system allows the insurance company
to retrieve the account information for a single policy holder
among the thousands and perhaps millions of policy holders
in its database.

Retrieval of information from a database is typically done
using queries. A query usually specifies conditions that apply
to one or more columns of the database, and may specify
relatively complex logical operations on multiple columns.
The database is searched for records that satisty the query,
and those records are returned as the query result. Structured
Query Language (SQL) is one specific query language that
may be used to query a database.

U.S. Pat. No. 6,915,291 entitled “Object-Oriented Query
Execution Data Structure”, issued on Jul. 5, 2005, discloses
an object oriented data structure that includes a plurality of
node objects arranged in a tree relationship to define a query.
The nodes include both data and code that allow the query to
be executed. The result is a query architecture that is signifi-
cantly extendible and adaptable.

One potential problem with the query execution data struc-
ture in U.S. Pat. No. 6,915,291 is the complexity of the data
structure for complicated queries. The resulting data structure
can have hundreds or even thousands ofnodes. A query of this
complexity becomes very difficult to debug. Debugging que-
ries is important for two primary reasons. The first is to check
the logic of the query itself, to make sure the query is properly
defined. The second is to check the run-time performance of
the query.

Statement level debuggers are known in the art, and have
been used to debug queries. The problem with a statement
level debugger is that a breakpoint is typically set when a
particular object is executed. Note, however, that a given
object type may appear in a query execution data structure at
a number of different locations, each executing the same
implementation methods, but potentially only one of these
objects is actually contributing to the problem being
debugged. For example, if a query execution data structure
has ten instances of an object, and a breakpoint is set to break
execution when that object type is executed, the debugger will
break execution each time any of the ten instances of the
object are executed, even though most of the instances may
not contribute to the problem. The result is a debugger that
breaks an excessive number of times.

10

25

40

45

55

2

Current debuggers do not have the capability of executing
a query execution object to the point of failure, and halting
execution at the proper place and time in the code, even using
elaborate debugger macros. As a result, it is very difficult, if
not impossible, to debug a complex query execution data
structure that includes many query execution objects using
known statement level debuggers. Without a way to debug
query execution data structures, the prior art will continue to
suffer from inefficient ways of debugging queries.

DISCLOSURE OF INVENTION

According to the preferred embodiments, nodes in a query
execution data structure have monitor and dump methods
defined. The monitor method enables the collection of infor-
mation from the node. The dump method outputs the moni-
tored information from each node. A monitor and debug
mechanism of the preferred embodiments includes a graphi-
cal user interface that allows a user to graphically examine a
query execution tree, to enable monitoring of the nodes on a
node-by-node basis, and to view information dumped from
the query execution data structure as the query is executed or
after the query is executed. The result is a powerful tool that
allows efficiently monitoring and debugging a query imple-
mented in an object oriented query execution data structure.

The foregoing and other features and advantages of the
invention will be apparent from the following more particular
description of preferred embodiments of the invention, as
illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The preferred embodiments of the present invention will
hereinafter be described in conjunction with the appended
drawings, where like designations denote like elements, and:

FIG. 1 is a block diagram of an apparatus in accordance
with the preferred embodiments;

FIG. 2 is a block diagram showing details of the query
execution data structure in FIG. 1 and how it communicates
with the monitor and debug mechanism;

FIG. 3 is a sample query for illustrating the concepts of the
preferred embodiments;

FIG. 4 is a prior art query execution data structure for the
query in FIG. 3;

FIG. 5 is a query execution data structure in accordance
with the preferred embodiments for the query in FIG. 3;

FIG. 6 is a display window showing operations that may be
performed on a selected query execution tree in the graphical
user interface in the monitor and debug mechanism shown in
FIG. 1,

FIG. 7 is a display window showing a graphical display of
a query tree as the query is being executed;

FIG. 8 is a display window showing a graphical display of
a query tree after being refreshed as the query continues
execution;

FIG. 9 is a display window showing data in a scan node and
possible operations on the scan node in accordance with the
preferred embodiments;

FIG. 10 1is a display window showing the scan node in F1G.
9 after clicking on the change monitor state button t enable the
collection of more extensive data;

FIG. 11 is a display window showing the attribute opera-
tion list for the query tree display;

FIG. 12 is a display window showing an attribute descrip-
tor vector for the query tree display;

US 9,400,810 B2

3

FIG. 13 is a display window showing a query controller
window for controlling the execution of the query defined by
the query execution tree;

FIG. 14 is a flow diagram of a method in accordance with
the preferred embodiments; and

FIG. 15 is a flow diagram of one specific implementation of
step 1420 in FIG. 14 in accordance with the preferred
embodiments.

BEST MODE FOR CARRYING OUT THE
INVENTION

The preferred embodiments provide an efficient way to
monitor a query execution data structure as it executes, which
allows for debugging a query corresponding to the query
execution data structure. Each node in the query execution
data structure includes a monitor() method that enables col-
lection of monitored data, and a dump() method that outputs
the monitored data. A debug and monitor mechanism receives
the monitored data, and displays information corresponding
to the monitored data in a graphical user interface. The debug
and monitor mechanism allows monitoring and debugging a
query as the query executes, thereby allowing a powerful tool
for real-time monitoring and debugging.

Referring to FIG. 1, a computer system 100 is one suitable
implementation of an apparatus in accordance with the pre-
ferred embodiments of the invention. Computer system 100 is
an IBM eServer iSeries computer system. However, those
skilled in the art will appreciate that the mechanisms and
apparatus of the present invention apply equally to any com-
puter system, regardless of whether the computer system is a
complicated multi-user computing apparatus, a single user
workstation, or an embedded control system. As shown in
FIG. 1, computer system 100 comprises a processor 110, a
main memory 120, a mass storage interface 130, a display
interface 140, and a network interface 150. These system
components are interconnected through the use of a system
bus 160. Mass storage interface 130 is used to connect mass
storage devices, such as a direct access storage device 155, to
computer system 100. One specific type of direct access
storage device 155 is a readable and writable CD RW drive,
which may store data to and read data from a CD RW 195.

Main memory 120 in accordance with the preferred
embodiments contains data 121, an operating system 122, a
database 123, a query engine 124, a query execution data
structure 125, and a monitor and debug mechanism 126. Data
121 represents any data that serves as input to or output from
any program in computer system 100. Operating system 122
is a multitasking operating system known in the industry as
15/08S; however, those skilled in the art will appreciate that the
spirit and scope of the present invention is not limited to any
one operating system. Database 123 is any suitable database,
whether currently known or developed in the future. Database
123 preferably includes one or more tables. Query engine 124
processes queries to database 123 in the form of query execu-
tion data structure 125. The query execution data structure
125 is an object oriented data structure representative of a
database query. The query execution data structure 125 has
the basic form shown in U.S. Pat. No. 6,915,291, but with
additional methods shown in FIG. 2 and described below that
allow monitoring the objects in the query execution data
structure and dumping the monitored data. The monitor and
debug mechanism 126 receives monitored data from the
query execution data structure 125, and displays information
corresponding to the monitored data in a graphical user inter-
face 127 to a user. In this manner, a user can use the monitor
and debug mechanism 126 to efficiently monitor and debug

10

20

30

40

45

4

the query defined by the query execution data structure 125
using a graphical tool. While monitor and debug mechanism
126 and graphical user interface 127 are shown in FIG. 1 on
the same computer system as the query engine 124 and query
execution data structure 125, the preferred embodiments
extend to a networked computer system where the monitor
and debug mechanism 126 and graphical user interface 127
are on a separate computer system coupled via network to
computer system 100.

Computer system 100 utilizes well known virtual address-
ing mechanisms that allow the programs of computer system
100 to behave as if they only have access to a large, single
storage entity instead of access to multiple, smaller storage
entities such as main memory 120 and DASD device 155.
Therefore, while data 121, operating system 122, database
123, query engine 124, query execution data structure 125,
and monitor and debug mechanism 126 are shown to reside in
main memory 120, those skilled in the art will recognize that
these items are not necessarily all completely contained in
main memory 120 at the same time. It should also be noted
that the term “memory” is used herein to generically refer to
the entire virtual memory of computer system 100, and may
include the virtual memory of other computer systems
coupled to computer system 100.

Processor 110 may be constructed from one or more micro-
processors and/or integrated circuits. Processor 110 executes
program instructions stored in main memory 120. Main
memory 120 stores programs and data that processor 110 may
access. When computer system 100 starts up, processor 110
initially executes the program instructions that make up oper-
ating system 122. Operating system 122 is a sophisticated
program that manages the resources of computer system 100.
Some of these resources are processor 110, main memory
120, mass storage interface 130, display interface 140, net-
work interface 150, and system bus 160.

Although computer system 100 is shown to contain only a
single processor and a single system bus, those skilled in the
art will appreciate that the present invention may be practiced
using a computer system that has multiple processors and/or
multiple buses. In addition, the interfaces that are used in the
preferred embodiments each include separate, fully pro-
grammed microprocessors that are used to off-load compute-
intensive processing from processor 110. However, those
skilled in the art will appreciate that the present invention
applies equally to computer systems that simply use /O
adapters to perform similar functions.

Display interface 140 is used to directly connect one or
more displays 165 to computer system 100. These displays
165, which may be non-intelligent (i.e., dumb) terminals or
fully programmable workstations, are used to allow system
administrators and users to communicate with computer sys-
tem 100. Note, however, that while display interface 140 is
provided to support communication with one or more dis-
plays 165, computer system 100 does not necessarily require
a display 165, because all needed interaction with users and
other processes may occur via network interface 150.

Network interface 150 is used to connect other computer
systems and/or workstations (e.g., 175 in FIG. 1) to computer
system 100 across a network 170. The present invention
applies equally no matter how computer system 100 may be
connected to other computer systems and/or workstations,
regardless of whether the network connection 170 is made
using present-day analog and/or digital techniques or via
some networking mechanism of the future. In addition, many
different network protocols can be used to implement a net-
work. These protocols are specialized computer programs
that allow computers to communicate across network 170.

US 9,400,810 B2

5

TCP/IP (Transmission Control Protocol/Internet Protocol) is
an example of a suitable network protocol.

At this point, it is important to note that while the present
invention has been and will continue to be described in the
context of a fully functional computer system, those skilled in
the art will appreciate that the present invention is capable of
being distributed as a program product in a variety of forms,
and that the present invention applies equally regardless of the
particular type of computer-readable signal bearing media
used to actually carry out the distribution. Examples of suit-
able computer-readable signal bearing media include: record-
able type media such as floppy disks and CD RW (e.g., 195 of
FIG. 1), and transmission type media such as digital and
analog communications links. Note that the preferred signal
bearing media is tangible.

Referring to FIG. 2, a query execution data structure 125 of
the preferred embodiments preferably includes a plurality of
nodes, with each node comprising a query execution object
210. Each node is preferably similar to the nodes in the query
execution data structure disclosed in U.S. Pat. No. 6,915,291,
except one or more of the nodes may include a monitor
interface 220 and a dump interface 230. The monitor interface
220 is preferably an object oriented method that allows
enabling and disabling the collection of extended monitored
data from the node. Note that the presence of the monitor
interface 220 provides storage for the monitored data, and
allows collection of a minimal set of monitored data even
when monitoring of the node is disabled. Thus, when moni-
toring ofanodeis disabled, e.g., by invoking monitor(off), the
minimal set of monitored data will still be collected. When
monitoring of a node is enabled, e.g., by invoking monitor
(on), a larger set of monitored data is collected. The dump
interface 230 is preferably an object oriented method that
allows dumping the monitored data. Note that the monitored
data may be received by the monitor and debug mechanism
126 in different ways. For example, a connection (e.g.,
socket) could be established between the dump interface 230
and the graphical user interface 127 in the monitor and debug
mechanism 126. As a result, the monitored data may be trans-
mitted in a data stream 240 directly between the dump inter-
face and the GUI 127. In the alternative, the dump interface
230 may write the monitored data to a file 250, which can then
be read by the GUI 127, as shown by the dotted lines in FIG.
2. Note that the data stream 240 and file 250 may have any
suitable format. One format for the data stream 240 within the
scope of the preferred embodiments uses an XML data
stream, which is self-describing to the recipient.

Referring to FIG. 3, a sample query is shown to illustrate
the concepts of the preferred embodiments. The sample query
selects all records from two different files, MYFILE1 and
MYFILE2. While this is a simple and somewhat contrived
query, it is useful to illustrate the concepts of the preferred
embodiments.

FIG. 4 shows a query tree 400 that is representative of a
query execution data structure as defined in U.S. Pat. No.
6,915,291 for the query in FIG. 3. A first scan node 420
interrogates MYFILE1 430, a second scan node 440 interro-
gates MYFILE2 450, and the results from the scan nodes 420,
440 are joined by an inner join node 410. While one can
appreciate the simplicity of the query tree for this very simple
sample query, one can also appreciate that a query of any
complexity can result in a query tree that is very complex, and
hence difficult to debug. The preferred embodiments provide
a simple way to monitor and debug a query execution data
structure.

Referring to FIG. 5, a query tree 500 in accordance with the
preferred embodiments includes an inner join node 510 and

5

10

15

20

25

30

35

40

45

50

55

60

65

6

scan nodes 520 and 540 that interrogate their respective
dataspaces MYFILE1 530 and MYFILE2 550. Note that the
query tree 500 has the same basic structure as the prior art
query tree 400 in FIG. 4. A significant difference is the pres-
ence of the monitor() and dump() methods in nodes 510, 520
and 540 in FIG. 5 that are not present in FIG. 4. Note that the
presence of the monitor() method assumes a minimal set of
data is collected from a node even when monitoring is dis-
abled. More extensive monitoring is enabled by invoking the
monitor() method with one or more parameters that indicate
enabling, such as monitor(on). In similar fashion, invoking
monitor(off) will disable the more extensive monitoring for a
node, but the minimal data will still be collected. Note that
monitor() and dump() are virtual methods that must be
implemented in each of the concrete subclasses. As a result,
each monitor() method specifies in its implementation what
extended data may be monitored. The monitor() methods on
each node allow individually enabling the monitoring on a
node-by-node basis.

The dump() method is invoked to read the monitored data
from a node. If monitoring is disabled for a particular node,
the dump() method will cause the minimal set of monitored
data to be read. If monitoring is enabled for a particular node,
the dump() method will cause the more extensive set of
monitored data to be read. In short, the dump() method
dumps out all of the monitored data, whether it be minimal (if
monitoring is disabled) or more extensive (if monitoring is
enabled). As shown in FIG. 2, the GUI 127 in the monitor and
debug mechanism 126 may invoke the dump() methods 230
on the nodes, causing the nodes to dump their monitored data
to the GUI 127. In this manner, the monitor() and dump()
methods allow retrieving monitored data from the query
execution data structure 125.

We now show several sample windows that could be dis-
played by the graphical user interface 127 in FIGS. 1 and 2
within the scope of the preferred embodiments. Referring to
FIG. 6, a sample window 600 is displayed by the GUI 127
once a query execution tree has been identified and selected.
The window 600 includes the specification of a host 610, a
port 620, and the name of the selected query execution tree
630. A refresh button 640 may be selected by the user to either
initially display a query tree, or to refresh an existing display
of'the query tree, thereby allowing the query tree to be viewed
dynamically as a query is being executed. A change monitor
state button 650 may be selected by the user to change the
monitor state of a currently-selected node, e.g. from disabled
to enabled. The show query controls button 660 is selected by
the user to invoke a window that allows the user to specify
conditions for the query that allow efficiently debugging the
query. The close button 670 is selected by the user to close the
window 600. We now assume the user selects the refresh
button 640, which results in the display of the query tree
display window 700 shown in FIG. 7.

The query tree display window 700 shows the query tree in
a graphical format similar to that shown in FIG. 5. A first scan
node 720 interrogates MYFILE1 730. A second scan node
740 interrogates MYFILE2 750. An inner join node 710 joins
the results from the scan nodes 720 and 740. Note that the
scan nodes include a count of the records that have been
processed so far. Thus, scan node 720 shows 251 processed
records, while scan node 740 shows 1,373,584,074 processed
records. We assume for this example that MYFILE2 is very
large, with several million records. As a result, it takes some
time for the query to execute, thereby allowing the user to
monitor the progress of the query as it executes. For example,
clicking on the refresh button 640 in FIG. 6 a second time will
result in the query tree display 700 in FIG. 8, which is the

US 9,400,810 B2

7

same display shown in FIG. 7, except the number of records
processed in nodes 720 and 740 are higher values. This illus-
trates how the monitor and debug mechanism of the preferred
embodiments can be used to monitor the progress of queries
as the queries are being executed.

We now assume the user double-clicks or otherwise selects
the scan node 720 in FIG. 8. Selecting the scan node causes a
new display window 900 to be displayed, as shown in FIG. 9.
Note that this window 900 shows data for scan node 2, as
shown in the title bar for window 900. The data includes the
node type 910, the number of records processed 920, and the
node ID 930. These three items of data 910, 920 and 930 make
up the minimal data that is monitored, even when monitoring
for this scan node is disabled. A more extensive set of data
may be monitored by clicking on the change monitor status
button 940 in FIG. 9, which causes the window 1000 in FIG.
10 to be displayed. Note that FIG. 10 includes the same top
portion that includes 910, 920 and 930, and the same buttons
940, 950 and 960 at the bottom. The change is the ability to
view many additional parameters, shown in FIGS. 10 as 1010,
1020 and 1030. The additional monitored data at 1010
includes an indication of monitor state, a count of monitor
cycles, a count of total cycles, a count of node cycles, a
running time, node CPU time, and total time. The additional
monitored data at 1020 includes method counters that show
how many times each of the listed methods have been
invoked. The additional monitored data at 1030 includes I/O
counters that show how often different I/O operations are
performed. The monitored data in window 1000 is the more
extensive data that includes the minimal data in boxes 910,
920 and 930, and the more extensive data at 1010, 1020 and
1030.

Referring back to FIG. 9, the display resources button 950
and display AOL button 960 allow displaying other features
relating to the query execution data structure, including
attribute descriptor vectors, attribute operation lists, etc. We
assume the user has selected the entire query in the query tree
display of FIG. 7, which displays a window similar to that
shown in FIG. 9 for the entire tree, and then clicks on the
display AOL button 960. The result is the display of the
attribute operation list (AOL) for the query tree, as shown in
window 1100 in FIG. 11. The AOL for the query tree includes
binary operation nodes 1110 and 1120, and a return operation
(TRUE) node 1130.

We now assume auser clicks on the display resource button
950 in FIG. 9, which results in the display of an attribute
descriptor vector for the query tree, as shown in window 1200
in FIG. 12. The attribute descriptor vector window 1200
includes a table with four entries, 0, 1, 2 and 3. The record
1210 that corresponds to the first record (record 0) has a data
type of a 32 bit integer for a User. The record 1220 that
corresponds to the second record (record 1) has a data type of
a 32 bit integer for a User. The record 1230 that corresponds
to the third record (record 2) has a data type of a 32 bit integer
for a Set Attribute Descriptor (SAD). The record 1240 that
corresponds to the fourth record (record 3) has a data type of
a 32 bit integer for a SAD. The values 55 and 76 shown for
records 1230 and 1240, respectively, correspond to the values
in tables MYFILE1 and MYFILE2, respectively, at the time
the attribute descriptor vector is displayed in window 1200.

We now assume the user is again viewing the display 600 in
FIG. 6, and then clicks on the show query controls button 660.
As a result, the window 1300 in FIG. 13 is displayed to the
user. Note that display 1300 includes a field 1310 that indi-
cates the last status for the query tree, and a close button 1320
for closing the window 1300. The last status field 1310 shows
whether the last operation succeeded or failed, and may

40

45

8

include text that states “success” or “fail”, or may include a
numerical or alphanumeric code to indicate specifically what
happened. The buttons on the left side of window 1300 may
each be individually selected. The query controller window
1300 allows a user to perform operations while a query tree is
being executed. The fields on the right side of window 1300
allow the user to input parameters for the corresponding
buttons on the left. In this manner, a query execution tree may
be executing, and the query controller window 1300 allows
the user to gain manual control of the query tree, and to
interactively click on buttons that perform functions that help
the user to evaluate the performance of the query.

Referring to FIG. 14, amethod 1400 in accordance with the
preferred embodiments starts by providing monitor and dump
methods in each node of a query execution tree (step 1410). In
the most preferred implementation, the monitor and dump
methods are provided in each and every node in the query
execution tree, as shown in step 1410. Note, however, that itis
equally within the scope of the preferred embodiments that
only a subset of the nodes will have monitor() and debug()
methods. A graphical user interface in the monitor and debug
mechanism is then executed (step 1420). The GUI receives
the monitored data from the nodes in the query execution tree,
then displays information corresponding to the monitored
data to the user.

Referring to FIG. 15, a method 1420 represents one suit-
able implementation for step 1420 of FIG. 14 within the scope
of the preferred embodiments. Method 1420 begins by dis-
playing the query tree (step 1510). The monitoring of indi-
vidual nodes in the tree may be enabled or disabled (step
1520). The monitored data is then read from nodes in the
query tree (step 1530), preferably by the GUI invoking the
dump() methods on the nodes in the query tree. The moni-
tored data dumped from the nodes is then graphically dis-
played to the user (step 1540). In addition, query debug func-
tions may be performed using the monitored data (step 1550).
Note that the preferred embodiments expressly extend to
other uses of the monitored data that are not shown in FIG. 15.

The preferred embodiments significantly improve the
power of the query execution data structure disclosed in U.S.
Pat. No. 6,915,291 by adding monitor and dump methods on
one or more nodes in the query execution data structure. The
monitor and dump methods enable the gathering and output
of monitored data to a monitor and debug mechanism, which
can then display corresponding information in a GUI to a
user. The result is a powerful tool for monitoring and debug-
ging even complex queries that may have hundreds or thou-
sands of nodes in their corresponding query execution data
structures.

While the tool may be used to perform real-time monitor-
ing of queries as they execute, many queries will not take
enough time to execute for a user to monitor the query in
real-time as it executes. In such a case, the debug and monitor
mechanism is useful as a post-processing tool to examine the
state of the query objects after query execution is complete. In
addition, the monitor and debug mechanism of the preferred
embodiments may specify a breakpoint for a particular node
that allows running the query to the point where the break-
point is encountered, then halting execution of the query for
analysis using the monitor and debug mechanism.

One skilled in the art will appreciate that many variations
are possible within the scope of the present invention. Thus,
while the invention has been particularly shown and
described with reference to preferred embodiments thereof, it
will be understood by those skilled in the art that these and
other changes in form and details may be made therein with-
out departing from the spirit and scope of the invention.

US 9,400,810 B2

9

The invention claimed is:

1. An apparatus comprising:

at least one processor;

a memory coupled to the at least one processor;

a database residing in the memory;

a query engine residing in the memory and executed by the
at least one processor, the query engine querying the
database;

a query execution data structure residing in the memory
and executed by the query engine, the query execution
data structure comprising a plurality of object oriented
nodes, wherein each node includes an object oriented
monitor method that enables collection of monitored
data from the node and an object oriented dump method
that outputs the monitored data, wherein a minimal set of
data is collected by the a node when monitoring is dis-
abled and an extended set of data is collected by the node
when monitoring is enabled, wherein enabling and dis-
abling monitoring is performed by invoking the monitor
method; and

a monitor and debug mechanism residing in the memory
and executed by the at least one processor, wherein the
monitor and debug mechanism comprises a graphical
user interface that receives the monitored data in a data
stream from at least one dump method in the query
execution data structure and displays a graphical repre-
sentation of the query execution data structure that
allows the user to enable monitoring of the plurality of
object oriented nodes on a node-by-node basis, to view
information dumped from the query execution data
structure as the query engine executes the query execu-
tion data structure, and to perform query debug func-
tions using the monitored data.

10

15

20

25

30

10

2. The apparatus of claim 1 wherein the monitored data is
written to a file, and the file is read by the monitor and debug
mechanism.

3. An article of manufacture comprising:

a monitor and debug mechanism that receives monitored

data from an object oriented query execution data struc-
ture that comprises a plurality of object oriented nodes
representative of a query to the database and displays to
auser in a graphical user interface a graphical represen-
tation of the query execution data structure that allows
the user to enable monitoring of the plurality of object
oriented nodes on a node-by-node basis, to view infor-
mation dumped from the query execution data structure
as the query executes, and to perform query debug func-
tions using the monitored data, wherein each node in the
object oriented query execution data structure includes
an object oriented monitor method that enables collec-
tion of monitored data from the node and an object
oriented dump method that outputs the monitored data in
a data stream to the monitor and debug mechanism,
wherein a minimal set of monitored data is collected by
the a node when monitoring is disabled and an extended
set of monitored data is collected by the node when
monitoring is enabled, wherein enabling and disabling
monitoring is performed by the monitor and debug
mechanism invoking the monitor method, wherein the
monitor and debug mechanism allows a user to examine
the monitored data in the graphical user interface as the
query executes; and

non-transitory recordable media bearing the monitor and

debug mechanism.

4. The article of manufacture of claim 3 wherein the moni-
tored data is written to a file, and the file is read by the monitor
and debug mechanism.

#* #* #* #* #*

